kayak à l'ile de ré
05/12/2007 15:41 par joel--77
on débarque....
ouf!! bientôt la pause
c'est plus calme
entrée dans le port de st martin de ré (nous c'est les kayaks hihi!!)
ouf!! enfin le départ!!moi je suis déja parti hihi
que de choses à enfiler!!
Embarquement à LOIX sur l'ILE de RE
Voila n'en dèplaise aux ècologistes, j'ai travaillè pendant 25ans dans une centrale nuclèaire en 3*8. J'ai vécu au milieux des neutrons, des irradiations, des contaminations et maintenant la nuit je ne passe pas inaperçu je brille de milles feux. Meuhhhhhhhhhh non je blague, rien de tout cela , le travail en centrale nuclèaire est trés sècurisè et nous sommes trés impliquès dans la mise en application et l'amèlioration de la sècuritè. Mon travail consistait à de la surveillance, des relevès, des essais, de la mise en sècuritè de circuit pour intervention et tout cela que ce soit le jour, la nuit, le week end ou jours fèriè (noël, nouvel an, pâques etc...). Sur cette vue du ciel vous pouvez voir (en partant du bas vers le haut de la vue) les 2 aèrorèfrigèrants d'où sort la vapeur propre, les 2 salles des machines (gris) où se trouvent entre autres les turbines et l'alternateur et enfin l'endroit des polèmiques , les batiments abritant les rèacteurs (ronds gris clair entourès de batiments de couleur gris foncé), au fond à gauche le poste de transformation, à droite le bassin d'appoint (eau venant du fleuve)
Une centrale nucléaire est une centrale électrique, utilisant la fission nucléaire de matières fissiles pour produire de la chaleur dont une partie est transformée en électricité. C'est actuellement la principale mise en œuvre civile de l'énergie nucléaire.
Une centrale nucléaire est constituée d'un ou plusieurs réacteurs nucléaires (jusqu'à 7), dont la puissance électrique varie de 40 MW à plus de 1450 MW. Selon les promoteurs du futur réacteur EPR, il devrait développer une puissance de 1600 MW. En 2006, 442 réacteurs fonctionnent dans 31 pays différents dans le monde, soit un total de 370 GW produisant environ 17 % de l'électricité mondiale (voir la liste des réacteurs nucléaires). Le nombre de réacteur construit tend à diminuer au profit d'un allongement de la durée de service des centrales (En 2006, la majorité réacteurs avaient de 15 à 36 ans, sept ayant de 37 à 40 ans, pour 2006)[1].
Sommaire[masquer] |
Le 27 juin 1954, la première centrale nucléaire civile fut connectée au réseau électrique à Obninsk en Union soviétique, avec une puissance de production d'électricité de 5 Mégawatts. Les centrales nucléaires suivantes furent Marcoule en Provence le 7 janvier 1956, Sellafield au Royaume-Uni, connectée au réseau en 1956, et le réacteur nucléaire de Shippingport aux États-Unis, connecté en 1957. Cette même année, les travaux de construction du premier réacteur à usage civil en France (EDF1) démarrèrent à la centrale nucléaire de Chinon.
La puissance nucléaire mondiale a augmenté rapidement, s'élevant de plus de 1 gigawatt (GW) en 1960 jusqu'à 100 GW à la fin des années 1970, et 300 GW à la fin des années 1980. Depuis, la capacité mondiale a augmenté beaucoup plus lentement, atteignant 366 GW en 2005, en raison du programme nucléaire chinois. Entre 1970 et 1990 étaient construits plus de 5 GW par an (avec un pic de 33 GW en 1984). Plus des deux tiers des centrales nucléaires commandées après janvier 1970 ont été annulées.
Les coûts économiques croissants, dus aux durées de construction de plus en plus longues, et le faible coût des combustibles fossiles, ont rendu le nucléaire moins compétitif dans les années 1980 et 1990. Par ailleurs, dans certains pays, l'opinion publique, inquiète des risques d'accidents nucléaires et du problème des déchets radioactifs, a conduit à renoncer à l'énergie nucléaire.
Une centrale nucléaire regroupe l'ensemble des installations permettant la production d'électricité sur un site donné. Elle comprend fréquemment plusieurs tranches, identiques ou non ; chaque tranche correspond à un groupe d'installations conçues pour fournir une puissance électrique donnée (par exemple 900 MWe, 1 300 MWe ou 1 450 MWe). En France, une tranche comprend généralement :
Les autres installations de la centrale électrique comprennent :
Dans une tranche nucléaire, le réacteur nucléaire est en amont d'une installation thermique qui produit de la vapeur transformée en énergie mécanique au moyen d'une turbine à vapeur ; l'alternateur utilise ensuite cette énergie mécanique pour produire de l'électricité.
La différence essentielle entre une centrale nucléaire et une centrale thermique classique est matérialisée par le remplacement d'un ensemble de chaudières consommant des combustibles fossiles par un réacteur nucléaire.
Pour récupérer de l'énergie mécanique à partir de chaleur, il est nécessaire de disposer d'une source chaude et d'une source froide.
Ainsi, une tranche nucléaire de type REP comporte trois circuits d'eau importants indépendants :
Il est constitué, suivant le type de tranche, de 3 ou 4 générateurs de vapeur associés respectivement à une pompe (par GV), un pressuriseur assurant le maintien de la pression du circuit (155 bar) puis d'un réacteur intégrant des grappes de contrôle et le combustible. Il véhicule, en circuit fermé, de l'eau liquide qui extrait les calories du combustible pour les transporter aux générateurs de vapeur (rôle de caloporteur). L'eau du circuit primaire a aussi comme utilité la modération des neutrons (rôle de modérateur) issus de la fission nucléaire. La thermalisation des neutrons les ralentit pour interagir avec les atomes d'uranium 235 et déclencher la fission de leur noyau. Par ailleurs, l'eau procure un effet stabilisateur au réacteur: si la réaction s'emballait, la température du combustible et de l'eau augmenterait. Cela provoquerait d'une part, une absorption des neutrons par le combustible (effet combustible) et d'autre par une modération moindre de l'eau (effet modérateur). Le cumul de ces deux effets est dit "effet puissance": l'augmentation de ce terme provoque l'étouffement de la réaction d'elle-même, c'est un effet auto-stabilisant.
Celle-ci est composée de plusieurs étages séparés et comportant chacun de nombreuses roues de diamètre différent. D'abord, la vapeur subit une première détente dans un corps haute pression (HP; de 55 à 11 bar) puis, elle est récupérée, séchée et surchauffée pour subir une seconde détente dans les corps basse pression, (BP; de 11 à 0.05 bar). On utilise les corps BP dans le but d'augmenter le rendement du cycle thermo-hydraulique.
La sortie du dernier étage de la turbine donne directement sur le condenseur, un échangeur de chaleur dont la pression est maintenue aux environs de 50 mbar absolu (vide) par des pompes à vide. L'eau condensée dans cet appareil est réutilisée pour réalimenter des générateurs de vapeur.
L'énergie mécanique produite par la turbine sert à entraîner l'alternateur qui la convertit en énergie électrique, celle-ci étant évacuée par le réseau électrique.
Lorsque la tranche nucléaire débite de la puissance électrique sur le réseau, on dit qu'elle est "couplée" au réseau. La déconnexion intempestive de l'alternateur au réseau (ce qu'on appelle un "déclenchement"), nécessite une réduction immédiate de l'alimentation en vapeur de la turbine par des vannes de réglage disposées sur les tuyauteries de vapeur, faute de quoi, sa vitesse de rotation augmenterait jusqu'à sa destruction, en raison de la force centrifuge excessive s'exerçant alors sur les aubages. Néanmoins, dans ce cas-ci, la tranche reste en service à faible puissance: la turbine est en rotation et reste prête au recouplage immédiat sur le réseau (la tranche est alors "ilotée" : elle alimente elle même ses auxiliaires).
Réacteurs nucléaires et centrales en projet [modifier]
Tendances : Malgré la fin annoncée du pétrole bon marché, le nombre de réacteurs nucléaires et de centrales construits et en projet dans le monde est en forte diminution. Alors que pour la seule année 1970 la construction de 37 nouveaux réacteurs avait été entamée dans le monde (année-record), et que 6 étaient mis en service opérationnel, en 2005, seuls trois réacteurs neufs étaient en début de construction dans le monde, pendant que seuls quatre réacteurs achevés se connectaient au réseau. Ce déclin a commencé en 1986 (date de la catastrophe de Tchernobyl et s'est stabilisé vers 1994, date à partir de laquelle la construction a stagné à un taux de de 2 à 3 réacteurs en début de construction par an)[2].
Sauf au Japon où le surgénérateur Super Monju fonctionnait encore en 2006, stagnant à 246 MWe de production, la filière surgénération a été abandonnée (y compris pour le Superphénix français) en raison de ses risques et du manque de rentabilité (phénix fonctionnait toutefois encore en 2006 pour une puissance de 233 MWe (source AIEA, 2006).
L'énergie nucléaire est un sujet de débat politique. 17% de l'électricité dans le monde est produite par la filière nucléaire, la proportion variant largement d'un pays à l'autre.
Les déchets radioactifs proviennent de différentes étapes du cycle du combustible nucléaire. 10% de ces déchets environ sont des éléments de forte activité radiologique ou de longue demi-vie [1] [2].
Après l'arrêt définitif de l'exploitation, une centrale nucléaire est entièrement démantelée, y compris les réacteurs nucléaires.
Les matériels et équipements des réacteurs nucléaires sont dimensionnés pour une certaine durée de vie. Alors que certains sont remplacés pendant les arrêts périodiques du réacteur (ex: générateur de vapeur), d'autres restent dans le réacteur. Lors du démantèlement, tous les équipements sont démontés et envoyés si nécessaire dans des centres de stockage de déchets radioactifs.
Le démantèlement d'un réacteur se fait en 3 étapes :
Actuellement, la durée du démantèlement d'une centrale nucléaire est estimée à 30 ans entre l'arrêt du réacteur et la remise du site à l'ètat initial
Pour complèter vous avez toutes ces informations et plus encore sur: http://fr.wikipedia.org/wiki/Centrale_nucl%C3%A9aire
Une première étape d’aisance dans l’eau qui prend en compte les fondamentaux d’un savoir nager pour tous (organisation club). Cette organisation se décline en trois étapes incontournables de formation : ô€‚¾ « Le Sauv’nage » : garantir la sécurité des pratiquants Une première étape d’aisance dans l’eau qui prend en compte les fondamentaux d’un savoir nager pour tous (organisation club). ô€‚¾ « Le passeport de l’eau » : enrichir et capitaliser les habiletés motrices Une seconde étape qui certifie des habiletés motrices diversifiées à travers la découverte des 4 disciplines c’est à dire la natation course, le water-polo, la natation synchronisée et le plongeon (organisation départementale). ô€‚¾ « Le test pré-compétitif » : aller vers la compétition Une troisième étape qui garantie à son titulaire un savoir faire minimum pour aborder la compétition dans sa discipline. La formation du jeune nageur s’appuie donc sur des choix pédagogiques libres qui s’articulent autour d’étapes de formation simples mais exigeantes. http://www.comite-dep-natation77.com/enf_cd77/page_organisation_pratique.html
ô€‚¾ «Cette évolution s’inscrit dans l’organisation d’une natation fédérale et interfédérale. Les écoles de natation doivent être des lieux de découverte et d’apprentissage de toutes les disciplines de la natation. Pour avoir une culture forte, il faut développer toutes les disciplines. L’émergence des talents ne peut continuer à se satisfaire de choix par défaut. Le jeune nageur doit pouvoir choisir l’activité qu’il veut pratiquer. La pluridisciplinarité doit s’affirmer comme une priorité reconnue par un label interfédéral.